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SUMMARY

A higher-order accurate numerical scheme is developed to solve the two-dimensional advection–diffusion
equation in a staggered-grid system. The first-order spatial derivatives are approximated by the fourth-order
accurate finite-difference scheme, thus all truncation errors are kept to a smaller order of magnitude than
those of the diffusion terms. Therefore, there is no need to add an artificial diffusion term to balance
the unwanted numerical diffusion. For the time derivative, the fourth-order accurate Adams–Bashforth
predictor–corrector method is applied. The stability analysis of the proposed scheme is carried out using
the Von Neumann method. It is shown that the proposed algorithm has good stability. This method
also shows much less spurious oscillations than current lower-order accurate numerical schemes. As a
result, the proposed numerical scheme can provide more accurate results for long-time simulations. The
proposed numerical scheme is validated against available analytical and numerical solutions for one- and
two-dimensional transport problems. One- and two-dimensional numerical examples are presented in this
paper to demonstrate the accuracy and conservative properties of the proposed algorithm by comparing
with other numerical schemes. The proposed method is demonstrated to be a useful and accurate modelling
tool for a wide range of transport problems. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transport of sediments and contaminants has long been one of the great concerns to hydraulic and
environmental engineers. Sediment particles in alluvial rivers are subject to random and complex
movement. Understanding the transport of sediment particles is of fundamental and practical
importance to hydraulic engineering. Accurate simulation of suspended sediment transport is
essential for water quality management, environmental impact assessment and design of hydraulic
structures. Among others, the advection–diffusion (A–D) equation is crucial to the simulation of
suspended sediment transport, solute contaminant transport and water quality in rivers. Therefore,
improving the efficiency and accuracy of numerical schemes for the A–D equation has been a
focus of research.

Both time and spatial derivatives are presented in the A–D equation. Explicit or implicit time
integration schemes for the time derivative can be applied to the A–D equation. Spatial discretiza-
tion methods for solving the A–D equation can be broadly classified as the finite difference method
(FDM), finite volume method, finite element method (FEM) and spectral method [1]. Ii et al. [2]
presented a finite volume method on triangular meshes for advection transport problems. FEM
and FDM are classically used to solve the A–D equation. However, lower-order methods using
the advection term often exhibit an oscillatory behaviour or excessive numerical dispersion near
relatively sharp concentration fronts [3]. These problems become more serious for advection-
dominated transport [4]. Siegel et al. [5] developed a numerical scheme based on discontinuous
finite elements for the discretization of the advective term and on the mixed approximation of the
diffusive term for the solute transport equation in a porous medium. This scheme, however, still
introduces a small amount of numerical diffusion when sharp concentration fronts occur. Also, it
has increased the computational cost even compared with the high-order finite-difference schemes
[5]. FEMs applied to the A–D equation had been concisely reviewed by Franca et al. [6] to illustrate
the development of numerical schemes for the A–D equation. Compared with FEM, application
of the FDM to the A–D equation has gained more popularity, for the FDM is simpler than FEM in
general. The classical central-difference approximation of the advection term is simple but suffers
from excessive numerical oscillations [7]. Upwind schemes better represent the underlying physics,
but an unacceptable degree of numerical diffusion has to be typically introduced [8]. Bruneau et
al. [9] built a TVD scheme based on a family of second- and third-order Lax–Wendroff-type
schemes. Tsai et al. [10] proposed a hybrid finite-difference scheme capable of solving pure ad-
vection, pure diffusion and dispersion processes by combining two well-known schemes, namely,
the Crank–Nicholson second-order central-difference scheme and the Crank–Nicholson Galerkin
FEM with linear basis functions. There are still continuing interests in solving the one- or two-
dimensional A–D equation by the FDM [11, 12]. All these studies attempted to decrease the
commonly seen excessive artificial diffusion and spurious oscillations introduced by the numerical
method. However, the above-mentioned schemes used lower-order accurate time-stepping meth-
ods for the A–D equation and therefore have lower accuracy of numerical solutions for a fixed
time step.

For time-stepping methods, explicit schemes have the virtue of computational efficiency and
simplicity. An explicit scheme of growing popularity in free-surface codes is the QUICKEST
method [13]. This scheme can be considered to be central differencing plus a higher-order upwind-
biased correction to cancel the third-order Taylor-series error. When used with the explicit Euler
time advancement, QUICK (e.g. [14, 15]) is not stable for pure advection problems [16]. Implicit
methods are generally more stable, but require iterative methods and thus are costly and time
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consuming [17]. The predictor–corrector method attempts to combine best of both explicit and
implicit methods. The efficiency, accuracy and good stability properties of the Adams–Bashforth
predictor–corrector method have been demonstrated for wave equations [18, 19].

In this study, we develop a new finite-difference numerical scheme for the A–D equation in
a staggered-grid system. One of the important advantages of the staggered-grid scheme is the
good conservation property of the mass (e.g. [18, 20]). In addition, Orszag pointed out that the
staggered-mesh scheme is usually more accurate than non-staggered-grid scheme [21]. In this paper,
the fourth-order Adams–Bashforth predictor–corrector scheme is employed for time stepping and
the fourth-order accurate central finite-difference scheme for the first-order spatial derivatives.
The stability analysis will be carried out using the Von Neumann method. The accuracy of the
proposed model will be investigated in the examples of both one- and two-dimensional A–D
problems. In these examples, the numerical results are compared to available theoretical and/or
numerical results.

2. GOVERNING EQUATION

The aim of this work is to construct a higher-order efficient numerical scheme for the two-
dimensional A–D equation in the conservative form

�C
�t

+ �(UC)

�x
+ �(VC)

�y
= �

�x

(
Dx

�C
�x

)
+ �

�y

(
Dy

�C
�y

)
(1)

where C is the suspended load concentration, U and V are the depth-averaged horizontal fluid
velocity components in the x- and y-direction, respectively; Dx and Dy are diffusion coefficients
in the x- and y-direction, respectively. The main difficulty in solving this equation comes from the
advection term because numerical oscillations in the solution appear when an improper scheme
is applied [22]. We develop a fourth-order finite-difference numerical scheme for the advection
terms in a staggered-grid system to overcome this problem in this paper. The fourth-order Adams
predictor–corrector scheme is used to approximate the time derivative term. The predictor–corrector
method consists of a predictor step and a corrector step in each interval. The predictor estimates
the solution for a new point, and then the corrector improves the accuracy of the solution. The
predictor–corrector method uses the information from previous points instead of the intermediate
points in each interval. Figure 1 shows the schematic of the predictor–corrector method.

To apply the predictor–corrector method to Equation (1), we define a new function E , which
involves spatial derivatives of C and (U, V ) as follows:
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Figure 1. Grid points used in the predictor–corrector method.
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Now, rewrite Equation (1) as

�C
�t

= E(C,U, V ) (3)

3. NUMERICAL MODEL

3.1. Mesh discretization and variable definition

In this study, a staggered-grid system will be used in the numerical discretization of spatial
derivatives. Figure 2 illustrates this staggered-grid system in which all scalars such as concentration
C and water depth h are defined at the cell centre, while vectors such as velocity components U
and V are defined at the interfaces of the cell. The meshes are numbered by i = 1, 2, . . . ,m in the
x-direction and j = 1, 2, . . . , n in the y-direction. m and n are the total number of grid points in
the x- and y-direction, respectively. The mesh sizes in the x- and y-direction are represented by
�x and �y, respectively. And the time step is represented by �t . The vectors at centre of the cell
are obtained by the linear interpolation. For example, the fluid velocity at the centre of the cell
Ui, j can be obtained as follows:

Ui j = 1
2 (Ui−1/2, j +Ui+1/2, j ) (4)

3.2. Time matching by fourth-order predictor–corrector method

The governing equation (3) is marched in time by the fourth-order accurate Adams predictor–
corrector method in which the time level n refers to the present time with all information known.
First, the predictor step is implemented to Equation (3) by the explicit third-order Adams–Bashforth
scheme (e.g. [23, 24]):

Cn+1
i, j = Cn

i, j + �t

12
[23En

i, j − 16En−1
i, j + 5En−2

i, j ] (5)

where all information on the right-hand side of the equation is known from previous calculations.
The values of Cn+1

i, j are thus straightforward to obtain.

After the predictor step, the predicted values, Cn+1
i, j , are known. We can thus obtain the corre-

sponding values of E based on Equation (2). This information can be applied in the corrector step

jiC ,

jiH ,

jiU ,2/1−

2/1, +jiV

2/1, −jiV

jiU ,2/1+

Figure 2. The staggered-grid system used in the two-dimensional model.
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using the fourth-order Adams–Moulton method:

Cn+1
i, j = Cn

i, j + �t

12
[9En+1

i, j + 19En
i, j − 5En−1

i, j + En−2
i, j ] (6)

The predictor–corrector procedure is repeated until the error between two successive results
reaches a required limit. The numerical error, �C , will be computed for the variable as defined
in Equation (7)

�C =
∑

i, j |Cn+1
i, j − C (n+1)∗

i, j |∑
i, j |Cn+1

i, j

(7)

In this study, the stopping criterion of the iteration is �C̄<0.001 and the number of iterations in
the numerical experiments is usually less than three.

3.3. Finite-difference approximation for spatial derivatives

The first-order derivatives of advective flux f =UC, in x-direction in the domain except near
the boundary (i.e. i = 3, 4, . . . ,m − 2) are discretized by the fourth-order accurate four-point
central-difference method. Therefore, the leading order truncation error is within the fifth order
of magnitude. All the lower-order terms, the second-, the third- and the fourth-order errors, are
eliminated. Thus, all truncation errors are kept to a smaller order of magnitude compared to the
second-order diffusion terms. For example,(

� f

�x

)
i, j

= fi−2, j − 8 fi−1, j + 8 fi+1, j − fi+2, j

12�x
− 1

30

�5 f
�x5

�x4 (i = 3, 4, . . . ,m − 2) (8)

The first-order derivatives near the boundary (i.e. i = 2,m − 1) are discretized by the five-point
finite-difference scheme. For example,(

� f

�x

)
2, j

= −3 f1, j − 10 f2, j + 18 f3, j − 6 f4, j + f5, j
12�x

(9)

(
� f

�x

)
m−1, j

= 3 fm−1, j + 10 fm−2, j − 18 fm−3, j + 6 fm−4, j − fm−5, j

12�x
(10)

The second-order derivative of concentration in the domain except near the boundary is discretized
by the three-point central-difference method. For example,(

�2C
�x2

)
i, j

= 1

�x2
(Ci−1, j − 2Ci, j + Ci+1, j ) + 1

12

�4C
�x4

�x2 (i = 2, 3, . . . ,m − 1) (11)

The second-order derivative of concentration is discretized by the four-point forward and backward
FDM at the right and left-hand side boundaries, respectively. For example,(

�2C
�x2

)
1, j

= 1

�x2
(2C1, j − 5C2, j + 4C3, j − C4, j ) (12)
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A similar expression in the y-direction can be obtained for both the first-order and second-order
derivatives. From Equations (8) and (11), we can find that errors associated with the third-order
derivatives have been eliminated.

For the one-dimensional A–D equation, based on LeVeque [25], a FDM is considered conser-
vative if it can be expressed as

Cn+1
i =Cn

i − �t

�x
[FLUX(Cn

i−p,C
n
i−p+1, . . . ,C

n
i+q) −FLUX(Cn

i − p− 1,C
n
i−p, . . . ,C

n
i+q−1)] (13)

where FLUX is the sum of advective flux and diffusive flux. On the other hand, similar definitions
can be found and expressed as [26]∑

i
Cn+1
i �x = ∑

i
Cn
i �x (14)

The present numerical scheme can be proved as conservative in the computational domain except
at the boundaries based on either Equation (13) or (14) (e.g. combine Equations (5), (8) and (11)
for the predictor step; combine Equations (6), (8) and (11) for the corrector step).

4. STABILITY ANALYSIS

A Von Neumann stability analysis is applied to analyse the stability of the present numerical
scheme. For a uniform flow and a constant diffusion coefficient, Equation (1) in the x-direction
can be re-written as

�C
�t

=−U
�C
�x

+ D
�
�x

(
�C
�x

)
(15)

The corresponding E becomes

E(C,U ) = −U
�C
�x

+ D
�2C
�x2

(16)

We denote that

Cn
i =C0G

n exp(I i�) (17)

where I = √−1 is the imaginary unit, � = 2��x/L is the phase angle, C0 is the initial concentration
of the problem, and G is the amplification factor. Substituting the above definition into the Adams–
Bashforth predictor method, Equation (5), we obtain

G2(G − 1) − �1(23G
2 − 16G + 5) = 0 (18)

where

�1 = U · �t

�x

[−8 sin(�) + sin(2�)

12 × 6

]
I + 1

6

�t · D
(�x)2

(cos(�) − 1) (19)

Equation (18) can be solved for |G| as a function of �, given a constant dispersion number and
Courant number. The dispersion number, �, has the form

�= �t · D
(�x)2

(20)
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Figure 3. The maximum modulus of the amplification factor |G|max as a function of the phase angle �
for the predictor scheme, Cr = {1.0, 0.5, 0.2}.

And the Courant number, Cr, is

Cr =U

(
�t

�x

)
(21)

With the definition of dispersion number and Courant number, Equation (19) becomes

�1 =Cr

[−8 sin(�) + sin(2�)

72

]
I + �

6
(cos(�) − 1) (22)

There are three variables, Courant number, dispersion number and phase angle, in Equation (18).
By selecting three representative Courant numbers (Cr = {0.2, 0.5, 1.0}) and �= 0.4, we can plot
the maximum modulus of the amplification factor as shown in Figure 3. It is found that the predictor
scheme is stable when the Courant number is smaller than 0.5 and the dispersion number is less
than 0.5.

Similarly, the stability of the fourth-order Adams–Moulton corrector method, Equation (6), can
be investigated. The stability of the corrector scheme can be determined by the following equation:

G2(G − 1) − �2(9G
3 + 19G2 − 5G + 1) = 0 (23)

where

�2 =Cr

[−8 sin(�) + sin(2�)

24 × 6

]
I + �

12
(cos(�) − 1) (24)
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Figure 4. The maximum modulus of the amplification factor |G|max as a function of the phase angle �
for the corrector scheme, Cr = {1.0, 0.5, 0.2}.

Figure 4 shows the maximum modulus of the amplification factor as a function of the phase angle
by selecting three representative values (Cr = {0.2, 0.5, 1.0}) and � = 0.4. The corrector scheme
is stable when Cr is smaller than or equal to 1.0. Considering the combined effect of dispersion
and advection, the Courant number and dispersion number obtained above usually range from 0.1
to 0.5 for two-dimensional problems in proposed numerical experiments of this paper.

5. NUMERICAL RESULTS

In the following section, we shall present a series of numerical experiments including advection and
advection–diffusion transport problems. Special attention will be paid to avoid the artificial diffusion
and spurious oscillations in the present model, which are essential for the accurate simulation
of transport processes. Both one- and two-dimensional transport problems will be presented. Six
numerical examples will be presented to investigate the computational performance of the proposed
scheme: (i) pure advection of both the Gaussian and trapezoidal concentration distributions in
one-dimensional uniform flow; (ii) dispersion of a Gaussian concentration distribution in one-
dimensional uniform flow; (iii) one-dimensional viscous Burgers equation; (iv) pure advection of
a Gaussian concentration distribution in two-dimensional uniform flow; (v) pure advection of a
Gaussian concentration distribution in two-dimensional rigid-body rotating flow; and (vi) advection
and diffusion of a Gaussian concentration distribution in two-dimensional rigid-body rotating flow.

5.1. One-dimensional examples

5.1.1. Pure advection in uniform flow. Pure advection of both the Gaussian and trapezoidal con-
centration distributions in one-dimensional uniform flow will be presented in this example. First,

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:401–418
DOI: 10.1002/fld



A HIGHER-ORDER PREDICTOR–CORRECTOR SCHEME 409

14 15 16 17 18 19 20 21 22 23 24 25

0

0.2

0.4

0.6

0.8

1

Distance (m)

Distance (m)

R
el

at
iv

e 
C

on
ce

nt
ra

tio
n 

C
/C

0
R

el
at

iv
e 

C
on

ce
nt

ra
tio

n 
C

/C
0

Time = 20 sec

Exact Solution

Upwind Scheme
Proposed Scheme

26 27 28 29 30 31 32 33 34 35 36 37

0

0.2

0.4

0.6

0.8

1

Time = 80 sec

Exact Solution

Upwind Scheme
Proposed Scheme

(a)

(b)

Figure 5. Comparison of analytical solution and numerical solutions by proposed
scheme and upwind scheme for 1D pure advection of Gaussian concentration

distribution, U = 0.2m/s, �t = 0.2 s, �x = 0.2m.

an initial concentration of a Gaussian distribution is advected with a uniform velocity U = 0.2m/s.
A grid space of 0.2m and a time interval of 0.2 s are applied in this example. The Courant number
in this numerical experiment is 0.2. The renowned upwind scheme is also applied here as an
example to solve the same problem. This scheme is often considered to be efficient and simple
for simulating smooth concentrations. Figure 5 shows that the numerical solution by the proposed
method is almost identical to the analytical solution, without any phase errors presented. The
solution by the upwind scheme agrees with the exact solution well at the beginning stage in Figure
5(a). For longer-time simulations, discrepancy between the upwind scheme and exact solution
becomes more apparent. Furthermore, there are no numerical oscillations of the proposed scheme,
shown in Figure 5, compared with others that present numerical oscillations (e.g. [10, 15]). In
addition, there is no mass loss even after a longer-time simulation by the proposed scheme. The
numerical experiment is run on a dell Precision 450 workstation. The computer time by the upwind
scheme is about 0.255 s for 800 time steps, whereas the computer time is 0.262 s by the proposed
scheme. For this example, the computer time by the proposed scheme is about 3% more than the
upwind scheme. Secondly, an initial concentration of a trapezoidal distribution is advected with
a uniform velocity U = 1m/s. A grid space of 100m and a time interval of 50 s are applied in
this example. The Courant number in this numerical experiment is 0.5. We can conclude from
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Figure 6. Comparison of exact and numerical solutions for trapezoidal distribution,
(t = 4000 s), U = 1.0m/s, �t = 50 s, �x = 100m.

Figure 6 that the numerical solution by the proposed scheme agrees well with the exact solution.
The good mass conservative property of the proposed staggered-grid scheme has been shown in
these two examples. It is also demonstrated that the proposed scheme is more accurate than upwind
scheme.

5.1.2. Advection and diffusion in uniform flow. The diffusion of a Gaussian concentration distribu-
tion with a uniform velocity U = 0.5m/s and a dispersion coefficient D = 0.2m2/s is simulated.
The grid space is 0.5m and time step is 0.3 s, and the corresponding Courant number and dispersion
number are 0.3 and 0.24, respectively. The analytical solution given by the Gaussian probability
density function is

C(x, t) = M

2
√

�Dt
exp

[
− 1

4Dt
(x −Ut)2

]
= 1√

0.4t
exp

[
− 1

0.8t
(x − 0.5t)2

]
(25)

where M = √
2�. Both the numerical solution and the analytical solution are drawn in Figure 7.

From Figure 7, the numerical solution is almost identical to the analytical solution and there are no
numerical diffusion and oscillations presented. The example also shows that the proposed higher-
order accurate scheme does not need stricter stability conditions and has a good mass conservative
property.

5.1.3. Calculation of viscous Burgers equation. To further investigate the capability of the pro-
posed scheme for solving non-linear problems, a viscous Burgers equation is considered. The
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Figure 7. Comparison of numerical solution and analytical solution for
one-dimensional advection dispersion of Gaussian concentration distribution

(t = 150 s), U = 0.5m/s, D = 0.2m2/s, �t = 0.3 s, �x = 0.5m.

viscous Burgers equation can be expressed as

�C
�t

+ 1

2

�(C2)

�x
= D

�
�x

(
�C
�x

)
(26)

There exist different solutions given different initial and boundary conditions [27].
With the initial and boundary conditions

C(x, 0) = 1, x�0

C(x, 0) = 0, x>0

C(−∞, t) = 1, C(∞, 0) = 0, t>0 (27)

The exact solution of the above problem is (e.g. [26])

C(x, t) =
{
1 + exp

[
1

2D

(
x − 1

2
t

)]
erfc(−x/2

√
Dt)

erfc[(x − t)/2
√
Dt]

}−1

(28)

where erfc is the complementary error function. The numerical solution of the proposed scheme
at time t = 4 s is depicted in Figure 8 with a grid space of 0.02m, a time step of 0.01 s and the
diffusion coefficient of 0.02m2/s. The range of Courant number used in this example is from
0 to 0.5, whereas the dispersion number is treated as constant, 0.5. Figure 8 shows that the
result obtained by the proposed scheme agrees very well with the exact solution. This numeri-
cal example demonstrates that the proposed scheme can be accurately applied to the non-linear
problem too.
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Figure 8. Computational results of one-dimensional viscous Burgers equation by the proposed scheme.

5.2. Two-dimensional examples

5.2.1. Pure advection in uniform flow. This example is a typical example to test the advection
property (e.g. [12, 18]). To compare the current scheme with other numerical schemes, here the
same flow conditions used in Tsai’s scheme [28] will be applied. A Gaussian concentration
distribution has an initial peak value of 10 ppm and �x = �y = 220m. The flow has a constant
velocity U = 0.5m/s and V = 0.5m/s in a two-dimensional infinite domain. The initial central
position of this Gaussian distribution is at (x, y)= (1500, 1500m). A grid size of 100m × 100m
and a time step of 100 s are used for the simulation. The Courant number for this example is
0.5. Figure 9 shows the bird’s eye view of the computed results after 10 000 s. Table I displays
the maximum and minimum values of the proposed scheme and other several numerical schemes
[14, 28–30]. Compared with other schemes, the proposed scheme has the closest values to the exact
solution for both maximum and minimum values without resorting to a finer time step or spatial
grid. The proposed scheme is shown to have good mass conservative properties and higher-order
accuracy.

5.2.2. Pure advection in rigid-body rotating flow. A numerical example of pure advection of a
Gaussian concentration distribution in a two-dimensional rigid-body rotating flow is adopted to
investigate the application of the proposed scheme to the flow field with non-uniform flow velocity.
The square domain is discretized into a uniform mesh of 100 × 100 grids with �x = �y = 50m.
The steady flow field rotates as a solid body about its centre at an angular velocity of 0.314 rad/h,
yielding a range of fluid velocity from 0 at the domain centre to 0.31m/s at the domain edges. The
initial Gaussian pulse at t = 0 is located at the midpoint of the positive x-axis and the origin of
y-axis and �x = �y = 220m. This problem was run for three full rotations (60 h) compared with
other studies (e.g. [10, 12, 16, 31]) with only one full rotation. With a time step of 40 s, the range of
Courant numbers used in the x- and y-direction is from 0 to 0.25. Figure 10 shows the bird’s eye
view of the computed results after 60 h. The maximum and minimum values of simulated results
by the proposed scheme for three turns, the ADI-QUICK scheme and the ADI-TCSD scheme
after one turn of rotation are shown in Table II. The results agree well with the exact solution,
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Figure 9. Bird’s eye view of computed results for two-dimensional pure advection of Gaussian concentration
distribution (t = 10 000 s), �x = �y = 100m.

Table I. Maximum and minimum values for two-dimensional
pure advection in uniform flow.

Scheme Maximum Minimum

Exact solution 10 0.000
Proposed 9.91 −0.002
Tsai et al.∗ 9.87 −0.010
Holly-Preissmann∗ 9.60 −0.008
ADI-QUICK∗ 6.96 −0.957
MOSQUITO∗ 6.62 −0.959

∗Values from Tsai et al. [28].

and it is found that the error in the peak concentration is less than 1%. It is obvious that the
proposed scheme has a better solution in this numerical example for both maximum and minimum
values of the concentration. From this example, it is evidently shown that the proposed numerical
scheme is also suitable to accurately solve the two-dimensional advection problem with a varying
flow velocity field. The proposed scheme built in a staggered-grid system is demonstrated to have
higher-order accuracy even after three full rotations in this example.

5.2.3. Advection–diffusion in rigid-body rotating flow. A standard test problem, related to recir-
culating flows, is the advection and diffusion of a Gaussian pulse in a rotating flow field. This
numerical example provides an example to validate the numerical scheme for a two-dimensional
advection–dispersion equation with a varying velocity field and an established analytical solution.
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Figure 10. Bird’s eye view of pure advection of Gaussian pulse in solid body rotation
field � = 0.314 rad/h, �t = 40 s, �x = �y = 50m.

Table II. Maximum and minimum values for two-dimensional
pure advection in rotation flow.

Maximum Minimum
Scheme (%) (%)

Exact solution 100 0.00
Proposed 99.1 −0.02
Proposed (after three rotation) 97.3 −0.4
Tsai et al.∗ 97.8 −0.2
ADI-QUICK∗ 66.3 −5.7
ADI-TCSD∗ 64.6 −1.8

∗Values from Tsai et al. [10].

Moreover, this example has been used widely to test different numerical schemes, such as numerical
stability and numerical diffusion, spurious oscillations and phase errors (e.g. [12, 16, 28, 31–34]).
Furthermore, in this example, the transport changes from the advection dominance near the bound-
ary of the domain to the diffusion dominance in the region close to the centre. The above-mentioned
issues often arise in many important applications, which are more difficult to simulate compared
with purely advection-dominated problems [34].

In this example, the initial condition c0(x, y) is given as

c0(x, y)= exp

[
− (x − xc)2 + (y − yc)2

2�2

]
(29)
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Figure 11. Bird’s eye view of the advection–diffusion of Gaussian pulse in solid body rotation field
� = 0.314 rad/h, �t = 40 s, �x = �y = 50m, Dx = Dy = 0.1m2/s.

where (xc, yc) and � are the centre position and standard deviation, respectively. c0(x, y) is centred
at (xc, yc) with a minimum value of 0 and a maximum value of 1 and � = 200m. The corresponding
analytical solution for this problem, with a constant diffusion coefficient D, is given by [34]

c(x, y, t) = 2�2

2�2 + 4Dt
exp

[
− (x − xc)2 + (ȳ − yc)2

2�2 + 4Dt

]
(30)

where x̄ = x cos(�t)+ y sin(�t) and ȳ =−x sin(�t)+ y cos(�t) and � is the angular velocity. The
square domain is discretized into a uniform mesh of 100 × 100 grids with �x = �y = 50m. The
steady flow field rotates as a solid body about its centre at an angular velocity �= 0.314 rad/h,
yielding a range of fluid velocity from 0 at the domain centre to 0.31m/s at the domain edge.
The diffusion coefficients are Dx = Dy = 0.1m2/s. With a time step of 40 s, the range of Courant
numbers used in the x- and y-direction is from 0 to 0.25. The program is also run on a dell Precision
450 workstation. The computer time for 5000 time steps is about 45 s. Figure 11 shows the bird’s
eye view of the computed results after two rotations. The computed results in a cross section of the
pulse, together with the analytical solution, are shown in Figure 12. It can be seen that the proposed
method has very good accuracy, for the numerical solution agrees with the analytical solution very
well even after two rotations. Figure 13 presents the contour of concentrations after two rotations.
It can be shown that the discrepancy of the numerical solution and analytical solution is very
limited. From the numerical results, we find that the spurious oscillations and phase errors are very
limited for such a complex problem by the proposed higher-order accurate scheme presented in this
paper.
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Figure 12. Profile of normalized concentration of advection–diffusion of Gaussian pulse in circular flows.
� = 0.314 rad/h, �t = 40 s, �x = �y = 50m, Dx = Dy = 0.1m2/s.
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Figure 13. Concentration contour plot of advection–diffusion of Gaussian pulse in circular flows,
� = 0.314 rad/h, �t = 40 s, �x = �y = 50m, Dx = Dy = 0.1m2/s.
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6. CONCLUSIONS

In this study, a fourth-order accurate predictor–corrector algorithm has been developed for solving
the advection–diffusion equation in a staggered-grid system. It is demonstrated that the proposed
numerical model without an artificial numerical diffusion term has very good numerical conver-
gence. The leading order truncation error of the convection term is kept within a higher order
of magnitude, thus resulting in a higher order of accuracy and very limited numerical diffu-
sion. The proposed scheme has reduced significantly both the numerical diffusion and spurious
oscillations. The stability of the proposed scheme has been investigated by the Von Neumann
method. It is shown that there is no stricter stability requirement for this higher-order explicit
numerical scheme even with a combined effect of diffusion and advection. The model is veri-
fied by several one- and two-dimensional pure advection and advection–diffusion examples. The
numerical results are compared with analytical solutions and by other numerical methods. The
comprehensive testing examples have demonstrated that the proposed scheme has much better
accuracy and less spurious oscillations. Furthermore, there is no need to add anti-diffusion terms
to the proposed scheme to balance the unwanted numerical diffusion. The example of a Gaussian
pulse in a rotating field also shows that the proposed model can be applied to accurately simulat-
ing complex transport processes. The good conservative properties of the proposed scheme have
also been shown in the proposed examples. There is a potential for the proposed scheme to be
coupled with a hydrodynamic model to simulate the practical transport process in the complex
flow velocity field.
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